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The results of an investigation and the method of calculation of aerodynamics 
and heat transfer in short cylindrical chambers with swirled heat-transfer agents 
are presented. 

Swirling of the heat-transfer agent is widely used to intensify processes of heat and 
mass exchange in various devices. The variety of technological purposes of these devices de- 
termines the special features of their geometry, methods of swirling of the heat-transfer 
agent, and systems of input and output of the gases. In the paper we consider the special 
features of gas motion and heat transfer in a short cylindrical chamber with a stream-swirling 
generator in the form of tangential channels. The inlet channels were located near one end 
of the chamber. Output of the gases was through windows on its lateral surface at the op- 
posite end (Fig. I). Chambers of this construction are widely used in engineering, as heat- 
ing and cooling devices [i], among others, but there are practically no recommendations on 
their calculation. 

The experimental part of the work was carried out on a stand whose main elements are 
models of the cylindrical chamber. Their dimensionless length L was varied from 0.69 to 2.63 
in the tests. The inside diameters were 201 and 310 mm. The bodies of the models were as- 
sembled from individual sections tightly connected to each other. Air wassupplied to the 
chambers from one or from two diametrically opposite directions. The number of peripheral 
exit windows was varied from one to eight. The relative area Tin of the inlet slots was 
varied from 1.42"10 -2 to 9.54"10-2; the height hin of the inlet slots was varied from 3.23' 
10 -2 to 12.90"10-2; the output area (of the outlet windows) fout was varied from 2.39.10 -2 
to 9.54"10 -2 . 

The velocity and pressure distributions in the main part of the chamber volume were mea- 
sured with three-channel cylindrical and five-channel spherical probes by the usual method 
without causing significant disturbances in the stream. The velocity distributions in the 
wall boundary layer were taken with a special plane three-channel microtube. Outside dimen- 
sions of the receiver opening of the central channel of the microtube: height 0.39 mm, width 
1.3 mm; inside dimensions: height 0.2 mm, width 1.23 mm. The profile of the tip of the micro- 
tube was bent on a template so as to assure that its receiver part lay flush against the side 
surface of the chamber. The reading of the transverse coordinate from the wall was made from 
the instant contact was broken in the electric circuit between the tip of the tube and the 
surface of the chamber. 

The experimental investigation of the stress of surface friction on the side surface 
of the chamber was made by Preston's method [2], while heat transfer was investigated, as 
in [3], by the method of variation of the aggregate state of the heating agent -- the condensa- 
tion of slightly superheated steam. A thin-walled steam calorimeter was mounted on one of 
the sections of the body of the model. The longitudinal size of the working section of the 
calorimeter was 42 mm and the transverse size (along the perimeter) was 103 mm. To eliminate 
heat leaks along the chamber wall by heat conduction, the working section of the calorimeter 
was placed at the center of the steam jacket, while Textolite gaskets were mounted between 
the sections of the model with the calorimeter and the other sections, The temperature of 
the heat-transfer surface was monitored with copper-constantan thermocouples calked to it. 

These investigations allowed us to establish that, by somewhat simplifying the scheme of 
gas flow, the swirled streams in the chambers under consideration can be represented in the 
form of a peculiar plane semiconfined jet on a curved surface. The jet propagates under the 
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Fig. i. Diagram of the cylindrical 
chamber. 
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Fig. 2. Diagram of jet propagation 
near the wall. 

influence of longitudinal and transverse pressure gradients, Upon entering the chamber the 
jet, making one revolution in the inlet plane, departs from it and then propagates toward the 
outlet windows with a constant swirling angle y. The asymmetry of the stream along the peri- 
meter, very pronounced in the inlet cross section, disappears practically at once below it in 
the main section of flow, for which y = const. 

For the flow analysis we direct the x coordinate along the surface of the chamber along 
the curved trajectory of motion of the jet and the y axis along the normal to it (Fig. 2). 
We write the system of equations of the plane turbulent boundary layer for an incompressible 
gas on a curved surface with a constant radius of longitudinal curvature R in the form [4] 

p w  + p v  1 - -  w - - -  § I . . . .  
Ox ~ R Ox R Oy R ' 

pw ~ OP 

0 

Ox 

The boundary conditions of the problem are 

y = O ,  w = v = O ,  ~ = ~ ;  

(I) 
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y = 6 m ,  W= Wm, T = 0 ;  

y = 8 ,  w = O ,  x = O .  

The radius of longitudinal curvature R of the surface can be calculated from the well-known 
formula for the curvature of a helical line. 

The central part of the chamber is occupied by a mass of gases of relatively low activ- 
ity from the dynamic point of view, so that near the chamber axis we can use the condition 
3P/3x = 0. We transform the first equation of the system (i) using the second and third 
equations, and then we integrate over y from zero to 6m and 5. As a result of the integra- 
tion and an estimate of the order of the terms [5], we obtain 

6m 6 m ( ~)m ) d ~)rn d 
ddx oS W2dY-- wm I -- --R ---~- '0 ~dy R dx 6J" w2d~] - - - -  

" S + - a T  + = o. dx o ~m 9 

To close the system (2), (3) we use the connection [6] 

~m ~2 d~)m __ Tw . 
R m dx p (2) 

(3) 

6~/Yo.5~ = 0.15, 

well confirmed by our tests, as well as the dependence obtained; 

(4) 

2Tw = 0.0183 (Wm6m/~) -2/15. (5) cl = p w l  

In the region of the wall boundary layer the experimental distributions of the longitu- 
dinal component of the stream velocity could be generalized well by the usual power-law rela- 
tion with an exponent of 1/14, while in the jet part they could be generalized by the well- 
known Abramovich--Schlichting equation [7]. 

The expressions (2) and (3), with allowance for (4) and (5) and for the equations de- 
scribing the velocity distributions in both parts of the jet stream, after calculation of 
the integrals and certain transformations, were replaced by a system of two equations, which 
were then solved numerically. As a result, we obtained calculating equations for determining 
the thickness of the wall boundary layer and the velocity at its boundary: 

-~m = ~m/hin: = 0,016Re~ "~ I 13X0~ 94a~o .oss, (6) 

7s, , , - -  w~ _ B ( 7 )  
Wmi X 0'53 , 

where x = x/hin. (Since flow at the inner concave surface of the cylindrical chamber is 
being investigated in the paper, in Eq. (6) and below we consider only the absolute value of 
the radius of curvature.) 

The numerical value of B in Eq. (7) is determined from the condition w m = 1 at x = x i. 
As is known, the initial conditions of discharge of a jet have considerable influence on its 
dynamic characteristics. The agreement between experimental data obtained in the work and 
data calculated from Eq. (7) improves if we introduce into the analysis a coefficient 8 of 
correction for momentum, allowing for the nonuniformity of the velocity profile in the inlet 
channel, as well as the polar distance xo, connected with the finite size of the source of 
the jet. Then Eq. (7) takes the form 

- B6 ( 8 )  
r.~ - - 0 , 5 3 '  

Xl 

where x~ = x -- xo. 
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Fig. 3. Comparison of test data with the cal- 
culated relations (8) and (9), Ko = 6m/Re-0,10~0.05 
(B~ -~176 Parameters of the cylindrical chamber 
i) fin = 1.42"10-=; 2) 2.84"10--2; 3) 4.26"10 -2 for 
hin = 7.46"10-= and a = i; 4) fin = 2.84"I0-=; 5) 
4.26"10-=; 6) 5.68"10-=; 7) 8.51"10 -2 for hin = 
7.46.10 -2 and a = 2; 8) hin = 4"98'10-=; 9) 9.95. 
i0 -= for ~in = 1.42'10-= and a = I. 

Substituting (8) into (6), we determine the variation of the thickness of the wall bound- 
ary layer in the explicit form 

0 0243Re " ~  lo~o.o-o o~ lo ~ , , =  �9 " . " ", R "  (BI3)  - ~  (9 )  

In Fig. 3 the calculated relations (8) and (9) are compared with the test data. From the test 
-- = = Q~o.ls oo=O.~5~O.~7. conditions Xo --15, ~i 15; B = 6.07; B = l.--in ; Wmi = 0,~in ~in vln; Y = 18~ R = 

3.88-15.5. The tests were made with 06 = 10,8-91.6 and Re = (0.87-6.7)'10 ", i.e., in a 
developed turbulent stream, when the influence of Taylor--Gortler vortices on the velocity 
distribution in the wall boundary layer and its thickness is insignificant. Determining the 
x coordinate through the swirling angle y, we can calculate the velocity characteristic and 
the geometrical characteristic of the stream at any point of the chamber using Eqs. (8) and 
(9), the velocity distributions, and the connection (4). 

We calculate the heat transfer using a modified Reynolds analogy [8] 

St = 0.5c I Prtbl (St/8,.)-n. ( 1 0 )  

We determine the ratio of the thicknesses of the thermal and hydrodynamic boundary layers 
introduced in Eq. (i0) using the integral energy equation 

6t 
d__ I w ( T = - - T )  dy=: qw , ( 1 1 )  
dx o 9Cp 

Eqs. (8) and (9), and the assumption that the distribution of excess temperature in the wall 
thermal boundary layer is similar to the velocity distribution in the hydrodynamic boundary 
layer and is also described by a power-law distribution with an exponent of 1/14: 

6?t/6~ = 1.586Re ~176 rltbD"--7/8-~0" 044 "~--0' 0 5 , ' , , 1  -~ [1 - -  t'Xu.s/Xl)" ,0.44~ ]r/8 (B~)0. o 18 (12) 

Substituting Eq. (12) into (I0), we obtain an equation for calculating the local heat-transfer 
coefficients along the trajectory of motion of the jet stream in the main section: 

--(x /x )o.445 s8 Nu:=O,O147Re~176176176 . tl.$ 1. ]--1/16 (B[~) 0' (13) 

In Fig. 4 the calculated relation (13) is compared with test data (Pr = 0.7) for different 
lengths of the initial unheated section. In the comparison the turbulent Prandtl number was 
taken as 0.75, as is done for jets on a plane surface [7]. The test data were obtained for 
Xu.s/hin = 57-186 and Re-10 -~ = 0.87-6.7. The agreement of the calculated and experimental 
results can be acknowledged as quite satisfactory. However, it must be noted that for 
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Fig. 4. Comparison of the calculated relation 
(13) with test data for different lengths of the 

initial unheated section, K = = N u / ~ - ~  - ~ 1 7 6 1 7 6  [ 1 - -  
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Re < 3"10" the test data lie somewhat higher than the relation (13). With a scatter of • 
for a confidence coefficient of 0.95 they are well generalized by the equation 

Nu = 0.096 Re ~ 7 Pr  P r ~  12/16x~-O. 5 s ~ - o .  oo 3 [ I - -  (x u.s/x1) 0" 445 ] -  1/16 (Bl~)o, 88 (14) 

In the absence of an unheated section (Xu. s = O) Eqs. (13) and (14) change into the calculating 
equations for the case when the dynamic and thermal boundary layers start to form simultaneously. 

To estimate the reliability of the results obtained, heat transfer on the side surface 
of the chamber was also calculated by a different method, using universal test distributions 
of the velocity in the wall boundary layer, In the region of the viscous sublayer (0~y+~5) 
and in the buffer zone(5~g+~30)the distributions of velocity correspond to its variation 
in wall jets on a plane surface [7]: for 0~y+~5 

f o r  5~y+~30 

~+ -y+; (15) 

w+ --  6,24 l n y + - -  5. (16) 

In the turbulent core (for 
boundary layer, 6+~400) 

30~y+~6~ , where ~ is the conventional thickness of the wall 

m,+ = 1 .231ny+-}-  12.04. (17) 

A calculation of the temperature profile [9] using the velocity distributions (15)-(17) allows 
us to determine the temperature head in the wall boundary layer, 

(Tw Tm) pcv * ( ) , - -  "rvo 1 -~- 3.81 P r / P r t b  6~ 
' ~  = qw V P - 6 .24Pr tb  In 1 - - O , 2 P r / P r t b  --k O-21n---~O-- @ 5 P r .  ( 1 8 )  
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The known values of the heat flux at the wall and the temperature head make it possible to 
obtain a calculating heat-transfer equation, 

Nu = ~ P r  V cJ2 Re'n6~l " (19) 

Substituting (5), (8), (9), and (18) into Eq. (19), we convert it to the form 

Nu = 0,122Re ~ 94 PrxF o, 56~-o, 003 lBt~)o, 94 (20) 

6, 24 Prtb ( In 1 @ 3,81 Pr/Prtb 
1 -- 0.2 Pr/Prtb 

-J- 0,518) + 5 Pr 

A comparison of the relations (13) for Xu. s = 0 and (20) in the investigated range of Reynolds 
numbers shows that the maximum discrepancy between them does not exceed 11%. 

NOTATION 

D, diameter of the cylindrical chamber; L = L/D, dimensionless length of the working 
volume of the cylindrical chamber; Kin = hin/D, dimensionless height of the inlet channel; 
-- 2 ~ 2 ~ . 
f~- = 4fin/~D ' o"t = 4fout/~D ' dlmenslonless areas of the stream inlet and outlet, re- 
sp~citvely; x, y, ~ongitudinal and transverse coordinates; y, stream swirling angle; = 
R/hin , dimensionless radius of curvature; w, v, velocity components in the directions of 
the x and y axes, respectively; Wm, maximum velocity in the direction of the x axis; yo.sm, 
value of y where the velocity w equals half its maximum value; xi, length of the initial 
section of the semiconfined jet; xo, polar distance of the jet; Wmi , maximum velocity at 
the end of the initial section of the semiconfined Jet; Vin, average stream velocity in the 
inlet channels; P, pressure; p, stream density; z, shear stress; ~w, wall shear stress; cf, 
frictional resistance coefficient; 6, thickness of the jet; am, thickness of the wall hydro- 
dynamic boundary layer; ~xx, momentum thickness; 6t, thickness of wall thermal boundary layer; 
B, correction coefficient for momentum; T, temperature; Tw, temperature of chamber surface; 
Cp, isobaric heat capacity; qw, heat-flux density at the surface; ~, kinematic viscosity 
coefficient; a, coefficient of thermal diffusivity; %, coefficient of thermal conductivity; 
~, local heat-transfer coefficient; ~, eq, kinematic coefficients of turbulent momentum and 

heat transfer, respectively; y+ y |/ ~w dimensionless coordinate; w + r--v . . . . .  w/r d imen- 
v I/ p 

sionless velocity; ~=(Tw--Tm)gcp~w/p /qw, dimensionless temperature head in the wall bound- 
ary layer; Re = wmihin/V , Re m = Wm6m/~, Reynolds numbers; Pr = v/a, Prandtl number; Prtb = 
eo/Sq, turbulent Prandtl number; Nu = ahin/%, Nusselt number; St = ~/pCpWm, Stanton number; 
G~ = (wm~XX/~)~, Gortler number. 
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NONLINEAR WAVES ON THE SURFACE OF A FREELY FLOWING VERTICAL LIQUID FILM 

Yu. P. Krasny and V. V. Mikho UDC 532.529.6 

The nonlinear equation describing nonstationary waves on the surface of a freely 
flowing vertical liquid film has been investigated by a perturbation theory 
method. 

I. The wave flow regimes of thin films on a vertical wall were investigated both ex- 
perimentally [1-4] and theoretically [4-9] in many studies. Experiment shows that laminar 
flow of a liquid film is unstab]~, starting with very small Reynolds numbers. The instabil- 
ity leads to generation of periodic waves on the surface of the film, whose amplitude in- 
creases with propagation, and quickly departs from the stationary value. To determine the 
characteristics of stationary waves, various assumptions on the wave flow regime are usually 
used in theoretical studies. Thus, in the first problem investigated on wave flow of a 
vertical liquid film, Kapitza [6] assumed minimal viscous energy dissipation for the wave 
realized. An assumption was introduced [7] on "optimality" of the wave regime, i.e., minimal- 
ity (for a given liquid discharge) of the mean film thickness. It was assumed in [4] that 
only "maximum growth waves" are realized experimentally, for which the amplitude increment 
is maximum. A problem was subsequently solved [8], where it was taken into account that in 
the stationary regime the amplitude increment corresponding to the stationary value of the 
wave number vanishes. At the same time, for all other wave number values the increment must 
be negative. The use of various assumptions of this nature, such as in [4, 6, 7], often leads 
to good agreement with experiment, but is, in our opinion, somewhat artificial. It seems to 
us that the wave characteristics of established flows must be obtained naturally from the 
solution of the nonstationary nonlinear equation describing the wave formation. In the present 
paper an attempt was made to solve this problem, using the method of slowly varying parameters, 
developed in detail by Bogolyubov and Mitropol'skii [i0] for nonlinear system oscillations. 
This method was generalized in [11-16] so as to investigate nonlinear wave processes. 

In the region of large Reynols numbers, when Re(ho/~) >> I, the original equation for the 
film thickness h(x, t) (Fig. i) is 

at + 17Vo Oh + 2 . 3 v  ~ h - - h o  Oh c~ho 03h 3~_.__ Oh Oh 
-- ' . r o d  -77-+ 3 ,o (1) 

3 /--y~ 

~)o _ Q where h o ~ /  - - ~ - Q  �9 

The equation given was obtained in [4]. Its linearized variant is also contained in the 
monograph [9]. For further study of this equation (see [4]), in the right-hand side we re- 

ah ah ah 
placed the time derivative -- bv --c-- ~--l.7vo and carried out the integration. This 

ot ax ~ " 
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